
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 25, No. 4, November 2012

CLASSIFICATION OF BINARY FORMALLY SELF-DUAL
EVEN CODES OF LENGTH 18

Sunghyu Han*

Abstract. We give the complete classification of binary formally
self-dual even codes of length 18. There are exactly 26568 inequiva-
lent such codes. This completes the classification of binary formally
self-dual even codes of length up to 18.

1. Introduction

A binary linear [n, k] code C is a k-dimensional vector subspace of
Fn

2 , where F2 is the finite field of two elements, and the elements of C
are called codewords. The weight wt(c) of a codeword c is the number
of non-zero coordinates, and the minimum weight of C is the small-
est weight among all non-zero codewords of C. An [n, k, d] code de-
notes an [n, k] code with minimum weight d. Two codes C and C ′ are
equivalent if one can be obtained from the other by permuting the co-
ordinates. The automorphism group of C is the set of permutations
of the coordinates which preserve C. The weight enumerator of C is
WC(x, y) =

∑n
i=0 Aix

n−iyi, where Ai is the number of codewords of
weight i in C. We shall set x = 1 for writing a weight enumerator. The
n + 1 tuple (A0, A1, A2, ..., An) is called the weight distribution of C.

The dual code C⊥ of C is defined as C⊥ = {v ∈ Fn
2 | u · v =

0 for all u ∈ C} where u · v denotes the standard inner product of u
and v. A code C is self-dual if C = C⊥. A code C is isodual if C and
C⊥ are equivalent to each other. A code C is formally self-dual (f.s.d.)
if C and C⊥ have identical weight enumerators. By definition, if C is

Received April 23, 2012; Accepted October 10, 2012.
2010 Mathematics Subject Classification: Primary 94B60.
Key words and phrases: classification, formally self-dual codes, formally self-dual

even codes.
*This work was supported by the Basic Science Research Program through the

National Research Foundation of Korea (NRF), which is supported by the Ministry
of Education, Science and Technology (2010-0007232).



634 Sunghyu Han

self-dual then C is isodual, and if C is isodual then C is f.s.d.. A code is
called even if the weights of all codewords are even, otherwise the code
is called odd.

Self-dual codes have received an enormous research effort due to their
close connections to other mathematical structures such as block designs,
lattices, modular forms, and sphere packings. Of course they are also
interesting subjects by themselves (c.f. [6]). The classification of binary
self-dual codes has been done up to length 36. For length 36, there are
exactly 519492 inequivalent binary self-dual codes [5].

Since an f.s.d. even code may have a larger minimum weight than a
self-dual code of the same length, f.s.d. even codes are interesting codes.
Another advantage of considering f.s.d. even codes is that we can obtain
designs from vectors of a fixed weight in an extremal f.s.d. even code
by the Assmus-Mattson theorem. The classification of f.s.d. even codes
was done up to length 16. For lengths 2, 4, 6, and 8, the classification
was done in 1994 [8]. For lengths 10, 12, 14, and 16, the classification
was done in 2001 [2].

The purpose of this paper is to give a classification of f.s.d. even codes
of length 18. Let C be an [n, k, d] f.s.d. even code. Then d ≤ 2[n8 ]+2 [7,
p. 379]. So that for the code length 18, the possible minimum weight
d = 2, 4, 6. It is known that there is a unique code with minimum weight
6 [8, 11]. The following theorem is our main result.

Theorem 1.1. There are exactly 26568 inequivalent formally self-
dual even codes of length 18, 2524 of which are iso-dual and 9 of which
are self-dual. There is exactly only one inequivalent formally self-dual
even [18, 9, 6] code which is iso-dual but not self-dual. There are exactly
6819 inequivalent formally self-dual even [18, 9, 4] codes, 743 of which are
iso-dual and 2 of which are self-dual. There are exactly 19748 inequiv-
alent formally self-dual even [18, 9, 2] codes, 1780 of which are iso-dual
and 7 of which are self-dual.

In Section 2, we give our classification algorithm. In Section 3, we
describe the weight enumerators and the automorphism groups of the
classified codes. All the computations are made using Magma [3]. The
generator matrices of the classification can be found in [4].



Formally self-dual even codes 635

2. Algorithm

In this section, we give our algorithm for a classification of binary
f.s.d. even codes. Basically our algorithm use Recursive Build-up and
Isomorph Rejection(RBIR) in [9, Section 3.1].

First we review the algorithm RBIR. This algorithm was used for
a classification of linear codes [9]. Let [Ik|A] be a parity check matrix
of a [2k, k] binary linear code, where Ik is the identity matrix of order
k. If one column of the A part is deleted, we get a [2k − 1, k − 1]
code. Hence, all [2k, k] codes can be obtained by starting from parity
check matrices of the [2k − 1, k − 1] codes, adding a new column in
all possible ways, and removing equivalent forms of codes. This is done
recursively, starting from the unique [k, 0] code with parity check matrix
[Ik]. Osterg̊ard noted that if we go through the candidates for a new
column in lexicographic order, it is sufficient to test only candidates that
are lexicographically bigger than the previous columns(that is, bigger
than the last column).

We modify RBIR with two facts. First one is the following. Osterg̊ard
was only interested in construction of [n, k] codes with minimum weight
d ≥ 3. Since we are also interested in the codes with minimum weight
d = 2, we should test the candidate that is lexicographically equal to the
previous column as well as ones that are lexicographically bigger than
the previous columns.

For the second modification of RBIR, we need the following lemma.

Lemma 2.1. Let H = [I|A] be a parity check matrix for a formally
self-dual even code C (I is the identity matrix). Then each row of A
and each column of A have odd weights.

Proof. Note that G = [AT |I] is a generator matrix of the even code
C. Each row of AT (i.e., each column of A) has odd weight. Since H is a
generator matrix of C⊥ which is even, each row of A has odd weight.

By Lemma 2.1, we only have to consider odd weight candidates, when
we add a new column in a parity check matrix. We define Modified
Recursive Build-up and Isomorph Rejection(MRBIR) as the RBIR with
above two modification. Now we describe our algorithm for the classifi-
cation of [2k, k] binary f.s.d. even codes.

Algorithm 1 (Main Algorithm)

• (Input) : k (k ≥ 2)



636 Sunghyu Han

• (Step 1): Find all inequivalent [k + i, i] binary even codes using
MRBIR for 1 ≤ i ≤ k − 2.

• (Step 2): For the parity check matrix of each inequivalent [2k −
2, k − 2] binary even code, add all possible odd weight columns
which are lexicographically equal to or bigger than the previous
column, and then extend the [2k−1, k−1] code to the [2k, k] even
code using the over all parity check, and then check whether the
[2k, k] even code is f.s.d., finally collect inequivalent [2k, k] f.s.d.
even codes.

• (Output): All inequivalent [2k, k] binary f.s.d. even codes
If the n and k become large, then the running time grows very fast.

The main reason is that the number of inequivalent codes becomes
large if the n and k become large. So that if we have a new code
then we have to test equivalence of the new code with the previously
obtained many inequivalent codes. We use Magma built-in function
“IsEquivalent(C1, C2)” for the equivalence test of two codes C1 and C2.
IsEquivalent(C1, C2) returns true if C1 and C2 are equivalent, otherwise
it returns false. To reduce the time of the equivalence test, we use the
following lemma.

Lemma 2.2. Let C1 and C2 be [n, k] binary linear codes. If C1 and
C2 are equivalent then the followings are true. (i) The order of the
automorphism group of C1 and the order of the automorphism group
of C2 are the same. (ii) The weight distribution of C1 and the weight
distribution of C2 are the same.

Proof. It is obvious from the definition of equivalence.

If we do not use Lemma 2.2, then we have the following equivalent test
Algorithm 2. (In Algorithm 2, InEqCodes is an array of the previously
obtained inequivalent codes. C is a new code which we have to test
equivalence with the previously obtained inequivalent codes. N is the
size of InEqCodes.)

Algorithm 2
for i = 1 to N do

if IsEquivalent(C, InEqCodes[i]) then
break;

end if;
end for;



Formally self-dual even codes 637

Table 1. The number of inequivalent [k + i, i] binary
even codes (1 ≤ i ≤ k−2) and the number of inequivalent
[2k, k] f.s.d. even codes

k\i 1 2 3 4 5 6 7 k − 1, k k-th Total Time k-th Total Time
Alg.1 with Alg.3 Alg.1 with Alg.2

2 1 0.000 0.000
3 2 2 0.000 0.000
4 2 5 5 0.062 0.078
5 3 7 17 14 0.499 0.702
6 3 10 26 72 29 3.666 11.295
7 4 13 43 135 438 99 35.194 580.558
8 4 17 63 257 1031 4549 914 1060.495 68299.827
9 5 21 97 459 2479 15125 109261 26568 5146857.142 −

If we use Lemma 2.2, then we have the following equivalent test Algo-
rithm 3. (In Algorithm 3, #AG(C) is the order of automorphism group
of C and WD(C) is the weight distribution of C.)

Algorithm 3
for i = 1 to N do

if (#AG(C) = #AG(InEqCodes[i])) and (WD(C) = WD(InEqCodes[i]))
then

if IsEquivalent(C, InEqCodes[i]) then
break;

end if;
end if;

end for;

Algorithm 3 is faster than Algorithm 2 in our case. The reason is
the following. If we have a new code C then we have to test equivalence
of C with the previously found inequivalent codes, InEqCodes[i]. For
a given i, it is more probable that C and InEqCodes[i] are not equiv-
alent. In Algorithm 3, before we call IsEquivalent(C, InEqCodes[i]),
it happens more frequently that #AG(C) 6= #AG(InEqCodes[i]) or
WD(C) 6= WD(InEqCodes[i]). In this case, we can avoid the function
call IsEquivalent(C, InEqCodes[i]) which is the most time consuming
operation.

In Table 1, we give our computation results of Algorithm 1. We
describe the number of inequivalent [k + i, i] even codes (1 ≤ i ≤ k − 2)
and the number of inequivalent [2k, k] f.s.d. even codes. The first column
represents k, the Input value. The second column to the eighth column



638 Sunghyu Han

Table 2. Binary formally self-dual even codes of length
2 ≤ n ≤ 18

n #fsd #iso #sd dmax #max, fsd #max, iso #max, sd
2 1 1 1 2 1 1 1
4 1 1 1 2 1 1 1
6 2 2 1 2 2 2 1
8 5 5 2 4 1 1 1

10 14 10 2 4 1 1 0
12 29 23 3 4 3 3 1
14 99 71 4 4 10 10 1
16 914 338 7 4 144 68 3
18 26568 2524 9 6 1 1 0

represent the number of inequivalent [k + i, i] binary even codes(1 ≤ i ≤
k−2) of Step 1. The ninth column represents the number of inequivalent
[2k, k] binary f.s.d. even codes of Step 2. The 10th column represents
the total computing time in seconds for each k using Algorithm 3. The
last column represents the total computing time in seconds for each k
using Algorithm 2. We used notebook PC with 2GB RAM and 2.00
GHz. From the results, we know that Algorithm 3 is much faster than
Algorithm 2. The total calculation time of the classification of binary
f.s.d. even codes of length 18 is 5146857.142 seconds which is about
two months. In Table 2, we give a complete classification of binary
f.s.d. even codes up to length n ≤ 18. The number of inequivalent
binary f.s.d. even codes is listed under “#fsd”. Among the f.s.d. even
codes, the number of isodual codes is listed under “#iso”. Among the
isodual codes, the number of self-dual codes is listed under “#sd”. In
the table, “dmax” is the largest minimum weight for which a binary
f.s.d. even code exists. The columns headed “#max,fsd”, “#max,iso”,
and “#max,sd”are, respectively, the number of binary f.s.d. even codes
with minimum weight dmax, the number of isodual binary f.s.d. even
codes with minimum weight dmax, and the number of binary self-dual
codes with minimum weight dmax.



Formally self-dual even codes 639

Table 3. The weight enumerators of binary formally
self-dual even codes of length 18

(α, β) NF NI NS (α, β) NF NI NS (α, β) NF NI NS

(−9,−9) 1 1 0 (−9,−7) 1 1 0 (−9,−6) 5 3 0
(−9,−5) 7 5 0 (−9,−4) 44 22 0 (−9,−3) 71 19 0
(−9,−2) 334 38 0 (−9,−1) 357 45 0 (−9, 0) 1185 155 1
(−9, 1) 756 68 0 (−9, 2) 1566 78 0 (−9, 3) 653 63 0
(−9, 4) 1023 109 0 (−9, 5) 245 35 0 (−9, 6) 369 33 0
(−9, 7) 42 14 0 (−9, 8) 118 36 1 (−9, 9) 6 6 0
(−9, 10) 24 6 0 (−9, 12) 9 5 0 (−9, 14) 2 0 0
(−9, 16) 1 1 0 (−9, 20) 1 1 0 (−8,−8) 4 4 0
(−8,−7) 3 3 0 (−8,−6) 44 10 0 (−8,−5) 53 13 0
(−8,−4) 327 51 0 (−8,−3) 310 30 0 (−8,−2) 1166 50 0
(−8,−1) 839 49 0 (−8, 0) 2213 169 1 (−8, 1) 1044 54 0
(−8, 2) 1883 67 0 (−8, 3) 623 45 0 (−8, 4) 977 87 0
(−8, 5) 172 24 0 (−8, 6) 272 22 0 (−8, 7) 15 7 0
(−8, 8) 92 22 0 (−8, 9) 2 2 0 (−8, 10) 12 2 0
(−8, 12) 5 5 0 (−8, 16) 6 6 2 (−7,−10) 1 1 0
(−7,−9) 1 1 0 (−7,−8) 13 7 0 (−7,−7) 6 2 0
(−7,−6) 80 8 0 (−7,−5) 57 11 0 (−7,−4) 268 32 0
(−7,−3) 222 20 0 (−7,−2) 745 33 0 (−7,−1) 437 27 0
(−7, 0) 1048 110 1 (−7, 1) 463 27 0 (−7, 2) 847 35 0
(−7, 3) 264 20 0 (−7, 4) 377 39 0 (−7, 5) 92 14 0
(−7, 6) 130 10 0 (−7, 7) 13 7 0 (−7, 8) 28 12 0
(−7, 9) 1 1 0 (−7, 10) 11 3 0 (−7, 12) 4 2 0
(−7, 16) 1 1 0 (−6,−12) 2 2 0 (−6,−10) 3 1 0

3. Weight enumerators and automorphism groups

In this section, we describe the weight enumerators and the automor-
phism groups of the classified binary f.s.d. even codes of length 18.

3.1. Weight enumerators

The weight enumerator WC(1, y) of a binary f.s.d. even code C of
length n is written using the Gleason’s theorem (c.f. [10]) as

WC(1, y) =
[n/8]∑

j=0

aj(1 + y2)n/2−4j(y2(1− y2)2)j

where aj ’s are undetermined parameters. Thus the weight enumerators
of an f.s.d. even code of length 18 is

WC(1, y) = 1+(9+α)y2+(36+3α+β)y4+(84+α−3β)y6+(126−5α+2β)y8+· · · ,

where 1 = a0, α = a1, and β = a2.
In Table 3 and Table 4, the ith column gives the values (α, β) in

the weight enumerator WC(1, y), the (i + 1)-st, (i + 2)-nd, and (i + 3)-
rd column list the number NF , NI , and NS of all the inequivalent f.s.d.
even codes, all the isodual codes, and all the self-dual codes, respectively,



640 Sunghyu Han

Table 4. The weight enumerators of binary formally
self-dual even codes of length 18(continued)

(α, β) NF NI NS (α, β) NF NI NS (α, β) NF NI NS

(−6,−9) 4 2 0 (−6,−8) 39 7 0 (−6,−7) 10 4 0
(−6,−6) 80 6 0 (−6,−5) 58 6 0 (−6,−4) 248 28 0
(−6,−3) 133 13 0 (−6,−2) 367 21 0 (−6,−1) 184 14 0
(−6, 0) 512 60 1 (−6, 1) 160 12 0 (−6, 2) 286 20 0
(−6, 3) 83 11 0 (−6, 4) 167 21 0 (−6, 5) 27 7 0
(−6, 6) 31 5 0 (−6, 7) 4 2 0 (−6, 8) 20 8 0
(−6, 12) 1 1 0 (−5,−12) 1 1 0 (−5,−10) 6 2 0
(−5,−8) 23 7 0 (−5,−7) 8 4 0 (−5,−6) 53 3 0
(−5,−5) 38 6 0 (−5,−4) 119 9 0 (−5,−3) 68 4 0
(−5,−2) 217 13 0 (−5,−1) 91 7 0 (−5, 0) 233 45 0
(−5, 1) 78 8 0 (−5, 2) 140 10 0 (−5, 3) 38 6 0
(−5, 4) 40 6 0 (−5, 5) 18 4 0 (−5, 6) 23 3 0
(−5, 8) 6 2 0 (−5, 9) 1 1 0 (−5, 10) 1 1 0
(−5, 12) 1 1 0 (−4,−10) 2 0 0 (−4,−9) 1 1 0
(−4,−8) 8 2 0 (−4,−7) 1 1 0 (−4,−6) 12 2 0
(−4,−5) 13 1 0 (−4,−4) 36 8 0 (−4,−3) 30 6 0
(−4,−2) 62 6 0 (−4,−1) 33 5 0 (−4, 0) 98 22 1
(−4, 1) 22 2 0 (−4, 2) 42 6 0 (−4, 3) 17 3 0
(−4, 4) 28 8 0 (−4, 5) 8 2 0 (−4, 6) 10 2 0
(−4, 7) 1 1 0 (−4, 8) 3 1 0 (−3,−16) 1 1 0
(−3,−12) 6 2 0 (−3,−10) 9 3 0 (−3,−9) 1 1 0
(−3,−8) 8 0 0 (−3,−7) 3 1 0 (−3,−6) 10 0 0
(−3,−5) 11 3 0 (−3,−4) 24 6 0 (−3,−3) 9 1 0
(−3,−2) 31 3 0 (−3,−1) 21 1 0 (−3, 0) 35 13 0
(−3, 1) 9 3 0 (−3, 2) 10 6 0 (−3, 3) 7 1 0
(−3, 4) 13 1 0 (−3, 5) 2 0 0 (−3, 7) 1 1 0
(−3, 9) 1 1 0 (−3, 10) 1 1 0 (−3, 12) 2 2 0
(−2,−12) 1 1 0 (−2,−10) 2 0 0 (−2,−8) 13 3 0
(−2,−7) 1 1 0 (−2,−6) 5 1 0 (−2,−5) 4 2 0
(−2,−4) 11 3 0 (−2,−3) 11 1 0 (−2,−2) 26 2 0
(−2,−1) 13 1 0 (−2, 0) 33 7 0 (−2, 1) 5 3 0
(−2, 2) 9 1 0 (−2, 4) 9 5 0 (−2, 5) 3 1 0
(−2, 6) 1 1 0 (−2, 7) 2 2 0 (−1,−10) 2 0 0
(−1,−7) 1 1 0 (−1,−6) 10 2 0 (−1,−5) 3 1 0
(−1,−3) 4 0 0 (−1,−2) 9 3 0 (−1,−1) 4 0 0
(−1, 0) 15 9 0 (−1, 1) 5 1 0 (−1, 2) 5 1 0
(−1, 3) 2 2 0 (−1, 6) 1 1 0 (0,−9) 1 1 0
(0,−6) 2 0 0 (0,−4) 5 1 0 (0,−3) 1 1 0
(0,−2) 3 1 0 (0, 0) 9 5 1 (0, 1) 2 0 0
(0, 2) 6 2 0 (0, 3) 1 1 0 (0, 4) 2 0 0
(0, 8) 1 1 0 (1,−20) 1 1 0 (1,−12) 1 1 0
(1,−9) 1 1 0 (1,−8) 2 0 0 (1,−5) 1 1 0
(1,−2) 5 1 0 (1,−1) 2 0 0 (1, 0) 6 2 0
(1, 1) 2 2 0 (1, 2) 1 1 0 (1, 3) 1 1 0
(2,−7) 1 1 0 (2,−4) 5 3 0 (2, 0) 5 3 0
(3,−10) 1 1 0 (3,−5) 1 1 0 (3,−2) 1 1 0
(3, 1) 5 1 0 (3, 2) 4 0 0 (3, 9) 1 1 0
(4, 0) 1 1 0 (4, 2) 3 1 0 (4, 3) 1 1 0
(4, 4) 3 1 0 (5, 0) 2 2 0 (5, 2) 1 1 0
(6,−12) 1 1 0 (7,−7) 1 1 0 (7, 9) 1 1 0
(7, 10) 1 1 0 (8,−2) 1 1 0 (9, 0) 2 2 0
(9, 3) 1 1 0 (13,−5) 1 1 0 (14, 0) 1 1 0
(20, 2) 1 1 0 (27, 9) 1 1 0



Formally self-dual even codes 641

Table 5. Automorphism groups of binary formally self-
dual even codes of length 18

#Aut(C) #codes #Aut(C) #codes #Aut(C) #codes #Aut(C) #codes
1 2327 768 262 27648 28 373248 2
2 1473 864 10 30720 2 387072 3
3 6 960 1 31104 2 414720 1
4 4795 1024 101 32768 1 451584 1
6 27 1152 184 36864 13 460800 2
8 2918 1296 2 41472 12 518400 1
9 1 1344 3 46080 2 552960 6

12 40 1536 120 49152 1 663552 2
16 4550 1680 1 51840 1 691200 1
18 2 1728 19 55296 28 829440 1
24 92 2048 26 57600 2 921600 1
28 1 2304 169 61440 1 967680 1
32 2047 2448 1 62208 4 995328 4
36 24 2688 5 69120 1 1036800 2
40 1 3072 79 73728 4 1105920 4
48 305 3456 130 82944 15 1290240 1
56 2 4096 10 86016 1 1327104 1
64 2202 4320 1 92160 1 1548288 1
72 46 4608 59 96768 2 1658880 5
80 2 5184 21 110592 13 1679616 1
96 387 5376 4 112896 1 2073600 1

108 1 5760 2 115200 2 2211840 3
112 1 6144 32 122880 1 2322432 2
128 930 6912 47 124416 4 2654208 2
144 239 7680 1 129024 1 4147200 1
160 2 8064 2 138240 1 5160960 1
192 493 8192 1 147456 1 5529600 1
216 6 9216 72 165888 6 7225344 1
240 1 10368 24 172032 1 8294400 2
256 514 10752 4 186624 1 10321920 1
288 159 12288 9 193536 1 12441600 1
320 2 13824 26 230400 2 18662400 2
360 1 15360 1 245760 1 19353600 1
384 647 16128 6 276480 5 24883200 1
432 8 16384 1 279936 1 101606400 1
512 204 18432 38 290304 2 185794560 1
576 366 20736 16 294912 2 203212800 1
640 1 21504 1 322560 1 3251404800 1
672 2 24192 6 331776 4 131681894400 1
720 1 24576 6 345600 1

with the weight enumerator corresponding to (α, β), where i = 1, 5, 9, 13.
From Table 3 and Table 4, we know that there are 227 different weight
enumerators.

3.2. Automorphism groups

Another property of a code is its automorphism group. The order of
the automorphism groups of the classified codes are displayed in Table 5.
In Table 5, #Aut(C) is the order of the automorphism group and #codes
is the number of codes whose automorphism group order is #Aut(C).



642 Sunghyu Han

From Table 5, we know that the total number of the different orders of
the automorphism groups is 159.

References

[1] P. Monk, An iterative finite element method for approximating the biharmonic
equation, Math. Comp. 151 (1988), 451-476.

[2] K. Betsumiya K and M. Harada, Classification of formally self-dual even codes
of lengths up to 16, Des. Codes Cryptogr. 23 (2001), 325–332.

[3] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The
user language, J. Symbolic Comput. 24 (1997), 235-265.

[4] S. Han, online available at http://kutacc.kut.ac.kr/˜sunghyu/data/bfsd.htm
[5] M. Harada and A. Munemasa, Classification of Self-Dual Codes of Length 36,

Advances Math. Communications, to appear.
[6] W. C. Huffman, On the classification and enumeration of self-dual codes, Finite

Fields Appl. 11 (2005), 451–490.
[7] W. C. Huffman and V. S. Pless, Fundamentals of Error-correcting Codes, Cam-

bridge University Press, Cambridge (2003).
[8] G. T. Kennedy and V. Pless, On designs and formally self-dual codes, Des.

Codes Cryptogr. 4 (1994), 43–55.

[9] P. R. J. Österg̊ard, Classifying subspaces of hamming spaces, Des. Codes Cryp-
togr. 27 (2002), 297–305.

[10] E. Rains and N. J. A. Sloane, Self-dual codes Handbook of Coding Theory (V.
S. Pless and W. C. Huffman, eds.), Elsevier, Amsterdam, (1998) 177–294.

[11] J. Simonis, The [18,9,6] code is unique, Discrete Math. 106/107 (1992), 439–
448.

*
School of Liberal Arts
Korea University of Technology and Education
Cheonan 330-708, Republic of Korea
E-mail : sunghyu@koreatech.ac.kr


